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The stability of a finite difference discretization of the time-dependent incompres-
sible Navier–Stokes equations in velocity-pressure formulation is studied. In paticu-
lar, we compare the stability for different pressure boundary conditions in a semiim-
plicit time-integration scheme. where only the viscous term is treated implicitly. The
stability is studied in three different ways: by a normal-mode analysis, by numerical
computation of the amplification factors, and by direct numerical simulation of the
governing equations. All three approaches identify the same pressure boundary con-
dition as the best alternative. This condition implicitly enforces the normal derivative
of the divergence to be zero on the boundary by coupling the normal derivative of the
pressure to the normal component of the curl of the vorticity. Using this boundary
condition, we demonstrate that the time-step is determined only by the convective
term. c© 2001 Academic Press

Key Words:incompressible Navier–Stokes; velocity-pressure formulation; normal-
mode analysis; chimera grids.

1. INTRODUCTION

We consider the stability of a finite difference discretization of the time-dependent in-
compressible Navier–Stokes equations in velocity-pressure formulation. In particular, we
are interested in a semi-implicit time-integration scheme, where the convective term is han-
dled explicitly and the viscous term is treated implicitly. Similar to a projection method
[1], the velocity-pressure formulation makes it possible to split the computation of the
pressure from the computation of the velocity. But in order to do so, a boundary condition
for the pressure must be specified (unless a staggered grid is used [8]). The accuracy of
various alternatives has been studied extensively in the literature [3], but numerical compu-
tations indicate that the stability is also affected by the specific choice of pressure boundary
condition, in particular for a semi-implicit method. In this paper, we perform a detailed
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TABLE I

The Three Pressure Boundary Conditions

div–grad
∂p

∂n
= νn · ∇2u+ n · f

∇ · u = 0

curl–curl
∂p

∂n
= −νn · ∇ × ∇ × u+ n · f

coupled ∇ · u = 0

study of the stability properties of three different pressure boundary conditions for no-slip
walls.

For a two-dimensional domain(x, y) ∈ Ä, the velocity-pressure formulation of the in-
compressible Navier–Stokes equations is

ut + (u · ∇)u+∇ p− ν∇2u = f , t ≥ 0,

∇2 p+∇u · ux +∇v · uy = ∇ · f , t ≥ 0,

u(x, y, 0) = u0(x, y).

(1)

Here,u = (u, v)T is the velocity, p is the kinematic pressure (pressure divided by the
constant density),ν is the constant kinematic viscosity, andf = ( f (u), f (v))T is the force
per unit mass. We will focus our effort on no-slip boundaries,

u(x, y, t) = 0, (x, y) ∈ ∂Ä, t ≥ 0, (2)

and study the pressure boundary conditions stated in Table I, which we derive below.
A boundary condition for the pressure can be obtained by taking the scalar product

between the momentum equations and the unit normal of the boundary,n = (n(1), n(2))T .
On a no-slip boundary, the condition becomes

∂p

∂n
= νn · ∇2u+ n · f , (x, y) ∈ ∂Ä, t ≥ 0. (3)

As Strikwerda [11] and Henshaw [5] point out, the pressure boundary condition (3) does not
add any new information to the system since the momentum equations already are satisfied
on the boundary. Thus, using (3) by itself would make the problem underdetermined.

To derive an appropriate boundary condition for the pressure, we consider the incom-
pressible Navier–Stokes equations in velocity-divergence formulation:

ut + (u · ∇)u+∇ p− ν∇2u = f , t ≥ 0,

∇ · u = 0, t ≥ 0,

u(x, y, 0) = u0(x, y).

(4)

It is straightforward to derive (1) from (4), but it is less well known under which circum-
stances (4) can be derived from (1), i.e., what conditions make the two systems equivalent.
For this purpose, we derive an equation for the divergence,δ = ∇ · u, by taking the diver-
gence of the momentum equations in (1) and enforcing the pressure equation. This results
in a homogeneous convection–diffusion equation forδ:

δt + uδx + vδy − ν∇2δ = 0, (x, y) ∈ Ä, t ≥ 0.
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Since (4) requires∇ · u = 0 for t ≥ 0, the initial velocity field must also be divergence
free:∇ · u0 = 0. Hence, the divergence can only depart from zero if it becomes nonzero on
the boundary∂Ä. Therefore, one alternative for making the velocity-pressure and velocity-
divergence formulations equivalent is to enforce

∇ · u = 0, (x, y) on ∂Ä, t ≥ 0. (5)

In the spatially discretized problem, boundary condition (5) is used to eliminate the ghost
point value of the velocity from the right-hand side of the Neumann condition (3). The
boundary condition (3), (5) will be referred to as the div–grad condition.

While the div–grad condition works fine in an explicit scheme (see Henshaw [5]), it does
not perform as well in our proposed semi-implicit method. Here, we have observed that the
time-step needs to be much smaller than what a von Neumann analysis indicates in order
for the scheme to be stable.

As an alternative to the Dirichlet condition (5), we can make the velocity-divergence
and velocity-pressure formulations equivalent by prescribing the normal derivative of the
divergence to be zero on the boundary:

∂δ

∂n
≡ n · ∇δ = 0, (x, y) on ∂Ä, t ≥ 0. (6)

By using the identity

1u = ∇(∇ · u)−∇ × ∇ × u,

the termn ·1u in the pressure boundary condition (3) can be written

n ·1u = n · ∇δ − n · (∇ × ∇ × u).

Hence, we can build the condition∂δ/∂n = 0 into the pressure boundary condition (3) by
enforcing

∂p

∂n
= −νn · (∇ × ∇ × u)+ n · f , (x, y) ∈ ∂Ä, t ≥ 0. (7)

We will call this the curl–curl condition. This boundary condition has been used before;
see for example Karniadakiset al. [7], who studied the accuracy of split velocity-pressure
methods in the context of spectral element discretizations. However, no analysis of the
stability was supplied.

A third, more expensive, alternative is to solve the pressure equation together with the
momentum equations. Then, no explicit boundary condition for the pressure is needed and it
suffices to enforce (5), i.e., the divergence of the velocity to be zero on the boundary. We call
this the coupled condition. We remark that this approach defies the basic motivation for using
the velocity-pressure formulation since it requires the pressure and momentum equations
to be solved simultaneously. If one is willing to do that, one could instead consider solving
the Navier–Stokes equations in velocity-divergence formulation; see Strikwerda [12] for
example.

To analyze the stability of the three aforementioned boundary conditions, we consider
Stokes equations in velocity-pressure formulation. Even though this problem lacks the
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nonlinear convective term in Navier–Stokes equations, it retains the difficulty of making
the velocity-pressure and the velocity-divergence formulations equivalent, i.e., enforcing
the divergence of the velocity to be zero on the boundary.

The remainder of the paper is organized as follows. In Section 2, we perform a normal-
mode analysis to study the stability of the semidiscrete Stokes equations for a half-plane
problem where time is left continuous. Here all three boundary conditions are shown to
satisfy the eigenvalue condition, which is necessary for stability. In Section 3, we extend the
normal-mode analysis to the fully discrete case, where the backwards Euler method is used
to discretize time. Even though this method is only first-order accurate in time, it clearly
demonstrates the stability properties of the various boundary conditions. We show that the
div–grad condition yields an unstable scheme for time-steps1t > Ch2, whereh is the grid
size andC is a constant. The other two boundary conditions satisfy the necessary Godunov–
Ryabenkii condition [4] for all1t > 0. We proceed in Section 4 by numerically computing
the amplification factors for a periodic channel domain. First, we consider Stokes equations,
where the theoretical results for the backwards Euler method are confirmed. We continue
by studying the linearized Navier–Stokes equations, where the viscous term is handled
implicitly and the convective term explicitly. Again, the div–grad condition is shown to
have inferior stability properties compared with the other two boundary conditions. Finally,
in Section 5, we apply the theory to compute unsteady flow around circular cylinders. We
perform the calculations on an overlapping grid with a second-order accurate semi-implicit
time-integration scheme. Both the div–grad and the curl–curl conditions are tested as well as
a simple homogeneous Neumann condition for the pressure. We conclude that the stability
of the div–grad condition is inferior, and that the accuracy of the simple homogeneous
Neumann condition is poor, compared to the curl–curl condition (7).

2. THE SEMIDISCRETE CASE

As a model for the incompressible Navier–Stokes equations, we consider Stokes equa-
tions. In this section we leave time continuous, but discretize by second-order accurate
centered divided differences in space. We will study the semiinfinite domainy ≥ 0 for
2π -periodic functions inx. A uniform Cartesian grid is employed with the step size
1x = 1y = h = 2π/N. The grid points are given byxj = ( j − 1)h, j = 1, 2, . . . , N;
yk = (k− 1)h, k = 0, 1, 2, . . . . We denote a grid function byf j,k = f (xj , yk) and define
the one-sided and centered divided difference operators by

Dy
+ f j,k = f j,k+1− f j,k

1y
, Dy

− f j,k = Dy
+ f j,k−1, Dy

0 =
1

2
(Dy
+ + Dy

−),

and corresponding expressions for the divided difference operators in thex-direction.
At y = 0, we impose the no-slip boundary condition:u(x, 0, t) = 0. For the pressure,

we will examine the three aforementioned boundary conditions. After discretization, the
coupled condition becomes

Dy
0v = 0, y = 0. (8)

The div–grad condition is given by{
Dy

0 p = Dy
+Dy
−v,

Dy
0v = 0,

y = 0,
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which can be written

Dy
0 p = 2

h
Dy
+v, y = 0.

Finally, the curl–curl condition is

Dy
0 p = −Dx

0 Dy
0u, y = 0.

For convenience, we write all pressure boundary conditions in the form

A(q)Dy
0 p = B(q)u, y = 0, (9)

for q = 1, 2, or 3. The coupled condition hasA(1) = 0 and B(1)u = Dy
0v; the div–grad

condition corresponds toA(2) = 1 andB(2)u = 2
h Dy
+v. Finally, the curl–curl condition has

A(3) = 1 andB(3)u = Dx
0 Dy

0u.
With this notation, the discretized Stokes equations are (omitting the grid point index)

ut + Dx
0 p = Dx

+Dx
−u+ Dy

+Dy
−u+ f (u),

vt + Dy
0 p = Dx

+Dx
−v + Dy

+Dy
−v + f (v),

Dx
+Dx
−p+ Dy

+Dy
−p = Dx

0 f (u) + Dy
0 f (v) := f (p),

u(x, 0, t) = 0, (10)

A(q)Dy
0 p(x, 0, t) = B(q)u(x, 0, t), q = 1, 2, or 3,

u(x, y, 0) = 0,

p(x, y, 0) = 0.

Note that the assumption of homogeneous initial data is not a restriction but is motivated by
the use of the Laplace transform method to analyze the stability. A problem with inhomoge-
neous initial datau(x, y, 0) = u0(x, y) can be transformed to a problem with homogeneous
initial data by the change of variablesũ(x, y, t) = u(x, y, t)− q(t)u0(x, y), whereq(t) is
a smooth function withq(0) = 1.

We denote the discrete Fourier transform of a grid functionf (xj , yk) that is 2π -periodic
in thex-direction by

f (xj , yk) = 1√
2π

N−1∑
ω=0

f̃ (ω, yk) exp(iωxj ).

To analyze the stability, we Fourier-transform the solution in thex-direction and Laplace-
transform in time. The dual variables ofu(x, y, t) andp(x, y, t) are denoted bŷu(ω, y, s)
and p̂(ω, y, s), respectively. The transformed counterpart of (10) is

sû+ i

h
sin(ωh) p̂ = − 4

h2
sin2(ωh/2)û+ Dy

+Dy
−û+ f̂ (u),

sv̂ + Dy
0 p̂ = − 4

h2
sin2(ωh/2)v̂ + Dy

+Dy
−v̂ + f̂ (v),

− 4

h2
sin2(ωh/2) p̂+ Dy

+Dy
− p̂ = f̂ (p),

û(ω, 0, s) = 0,

A(q)Dy
0 p̂(ω, 0, s) = B̂(q)û(ω, 0, s), q = 1, 2, or 3.
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Here B̂(q) is the Fourier-transformed counterpart ofB(q). We consider the wave numbers
ω = 0, 1, . . . , N − 1, which correspond to a complete set of eigenfunctionseiωx on the
grid.

It is shown in Gustafssonet al. [4] that the stability properties of (10) are closely related
to the eigenvalue problem

sû+ i

h
sin(ωh) p̂ = − 4

h2
sin2(ωh/2)û+ Dy

+Dy
−û,

sv̂ + Dy
0 p̂ = − 4

h2
sin2(ωh/2)v̂ + Dy

+Dy
−v̂,

− 4

h2
sin2(ωh/2) p̂+ Dy

+Dy
− p̂ = 0, (11)

û(ω, 0, s) = 0,

A(q)Dy
0 p̂(ω, 0, s) = B̂(q)û(ω, 0, s), q = 1, 2, or 3.

We calls an eigenvalue if there is a nontrivial solution of (11) with boundedL2-norm.
Several stability definitions for difference approximations are possible and we refer to

[4] for a discussion. Clearly, the solution cannot be stable if there is an eigenvalue with
<(s) > 0, since it would correspond to an exponential growth in time of the original vari-
ables. Norm estimates in terms of the original variables can often be obtained if there are no
eigenvalues in<(s) ≥ 0 for the Fourier–Laplace transformed problem (see [4]), but we post-
pone this analysis to a subsequent paper. Here, we will only check if there are eigenvalues in
<(s) ≥ 0.

The pressure equation in (11) is solved byp̂(y) = Pe−αy, whereα ≥ 0 satisfies

sinh

(
αh

2

)
= sin

(
ωh

2

)
. (12)

Inserting p̂ into (11) yields

Dy
+Dy
−û−

(
s+ 4

h2
sin2

(
ωh

2

))
û = i

h
sin(ωh)Pe−αy, (13)

Dy
+Dy
−v̂−

(
s+ 4

h2
sin2

(
ωh

2

))
v̂ = −1

h
sinh(αh)Pe−αy. (14)

The homogeneous part of these equations is the same and is solved byûh(y) = e−βy, where
β is the solution of

4

h2
sinh2

(
βh

2

)
= s+ 4

h2
sin2

(
ωh

2

)
, <(β) > 0. (15)

The particular solution has the form̂up(y) = Ae−αy. Inserting this expression into (13) and
identifying the coefficients yields

A =
i
h sin(ωh)P

4
h2 sinh2(αh/2)− (s+ 4

h2 sin2(ωh/2)
) = − i

hs
sin(ωh)P.
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Enforcing the boundary condition̂u(ω, 0, s) = 0 gives the solution to (11):

û(y) = − i P sin(ωh)

hs
(e−αy − e−βy), (16)

v̂(y) = P sinh(αh)

hs
(e−αy − e−βy), (17)

p̂(y) = Pe−αy. (18)

The remaining coefficientP must be determined by the last equation in (11) and we proceed
by analyzing the various cases.

2.1. The Coupled Condition

The boundary conditionDy
0 v̂(ω, 0, s) = 0 gives

P
sinh(αh)

hs

(
sinh(βh)

h
− sinh(αh)

h

)
= 0. (19)

Forω = 0, which corresponds toα = 0, there is a nontrivial solutionP. This corresponds
to the undetermined constant in the pressure which can be fixed by enforcing the mean of
the pressure to be zero. We proceed by studyingω > 0 and introduce

q(s) = 1

s
(sinh(β(s)h)− sinh(αh)). (20)

An example of the functionq(s) is shown in Fig. 1. We have

LEMMA 2.1. The function q(s) satisfies q(s) 6= 0 for <(s) ≥ 0.

FIG. 1. The functionq(s) for real-valueds for the casen = 15, ω = 1.
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Proof. From the definition ofβ(s),

sinh

(
β(s)h

2

)
=
√

h2s

4
+ sin2

(
ωh

2

)
.

Hence, the double angle formula yields

sinh(βh) = 2 sinh(βh/2)
√

1+ sinh2(βh/2)

= 2
√

h2s/4+ sin2(ωh/2)
√

1+ h2s/4+ sin2(ωh/2). (21)

Further,α = β(0), soq(s) can only be zero if

sinh(β(s)h) = sinh(αh).

Inserting the double angle formulas gives(
h2s

4
+ sin2(ωh/2)

)(
1+ h2s

4
+ sin2(ωh/2)

)
= sin2(ωh/2)(1+ sin2(ωh/2)),

which has one root ats= 0 and one ats= −4(1+ 2 sin2(ωh/2))/h2. However, ats= 0,
the denominator ofq(s) is also zero. By using l’Hospital’s rule, we get

lim
s→0

q(s) = h cosh(β(0)h)
dβ

ds

∣∣∣∣
s=0

= cosh(αh)h2

4 sinh(αh/2)
√

1+ sinh2(αh/2)

= cosh(αh)h2

2 sinh(αh)
= h2

2 tanh(αh)
. (22)

Henceq(s) > 0 for all<(s) ≥ 0. This proves the lemma.
We conclude that the system (11) with the boundary conditionDy

0 v̂(ω, 0, s) = 0 does
not have any eigenvalues in<(s) ≥ 0.

In subsequent sections, we will need the following lemma.

LEMMA 2.2. The function q(s) satisfies=(q(s)) = 0 if and only if=(s) = 0.

Proof. If the imaginary part ofq(s) is zero,q(s) must be real-valued; so there is a
real-valued constantC such that

q(s) = 1

s
(sinh(β(s)h)− sinh(αh)) = C.

Hence,

(sinh(αh)+ Cs)2 = sinh2(β(s)h).

After inserting the expressions forα andβ(s), we get

C2s2+ 4Cssin(ωh/2)
√

1+ sin2(ωh/2) = h4s2

4
+ h2s(1+ 2 sin2(ωh/2)).

One root iss= 0, and sinceC is real-valued, the other root is also real-valued. Hence, all
solutions of=(q(s)) = 0 have=(s) = 0. This proves the lemma.

We also have
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LEMMA 2.3. The imaginary part of q(s) is negative for=(s)>0 and positive for
=(s)<0.

Proof. For imaginarys, s= i ε, we have

q(i ε) = −2i

ε

(√
a+ εb+ ε2c−√a

)
,

where

a = sin2(ωh/2)(1+ sin2(ωh/2)),

b = h2i

4
(1+ 2 sin2(ωh/2)),

c = −h4

16
.

For 0< ε ¿ 1, an expansion yields

q(i ε) = − ib√
a
− i ε

4a
√

a
(4ac− b2)+ O(ε2).

Sinceb is purely imaginary, the first term is real, and after some algebra,

4ac− b2 = h4

16
,

so

=(q(i ε)) = − εh4

64a
√

a
+ O(ε2) < 0, 0< ε ¿ 1.

Since=(q(s)) 6= 0 for=(s) 6= 0 andq(s) is continuous, we have=(q(s))<0 for=(s)>0.
Further,q(s̄) = q(s), so=(q(s))>0 for =(s)<0. This proves the lemma.

2.2. The Div–Grad Condition

The boundary conditionDy
0 p̂(ω, 0, s) = 2

h Dy
+v̂(ω, 0, s) gives

−P
sinh(αh)

h
= 2P sinh(αh)

h3s
(e−αh − e−βh),

which can be written

P
sinh(αh)

h

(
1+ 2(e−αh − e−βh)

h2s

)
= 0.

We remark that it is not necessary to analyze this case sinceDy
0 p̂ = 2

h Dy
+v̂ is equivalent to

the coupled conditionDy
0 v̂ = 0. To see this, we note that thev-equation in (11) reduces to

Dy
0 p̂ = Dy

+Dy
−v̂ on y = 0. HenceDy

+Dy
−v̂ = 2

h Dy
+v̂, which givesDy

0 v̂ = 0.
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2.3. The Curl–Curl Condition

The boundary conditionDy
0 p̂(ω, 0, s) = − i

h sin(ωh)Dy
0 û(ω, 0, s) leads to

P

(
sinh(αh)

h
− sin2(ωh)

h2s

(
sinh(βh)

h
− sinh(αh)

h

))
= 0. (23)

Similar to the two previous boundary conditions, this also allows for nontrivial solutions for
ω = 0 that are due to the undetermined constant in the pressure. We proceed by considering
ω>0. Here we study

q2(s) = h2 sinh(αh)− sin2(ωh)q(s). (24)

By Lemma 2.2 it follows that=(q2(s)) = 0 if and only if=(s) = 0. Hence, we only need
to consider real-valueds and we proceed by studyingq2(s) for s= ξ , =(ξ) = 0. We note
that by (22),

lim
ξ→0

q2(ξ) = h2 sinh(αh)− sin2(ωh)
h2

2 tanh(αh)
.

In order to show thatq2(ξ) > 0 for ξ ≥ 0 we need the following lemmas.

LEMMA 2.4. The function q2(ξ) satisfies q2(0) > 0.

Proof. We have

q2(0) = h2

sinh(αh)

(
sinh2(αh)− sin2(ωh) cosh(αh)

2

)
.

The appropriate double angle formulas and (12) give

cosh(αh) = 1+ 2 sinh2

(
αh

2

)
,

sinh2(αh) = 4 sinh2

(
αh

2

)(
1+ sinh2

(
αh

2

))
,

sin2(ωh) = 4 sinh2

(
αh

2

)(
1− sinh2

(
αh

2

))
.

Hence,

q2(0) = 2h2 sinh2(αh/2)

sinh(αh)

[
2

(
1+ sinh2

(
αh

2

))
−
(

1− sinh2

(
αh

2

))(
1+ 2 sinh2

(
αh

2

))]
= 2h2 sinh2(αh/2)

sinh(αh)

[
1+ sinh2

(
αh

2

)
+ 2 sinh4

(
αh

2

)]
.

Since all the terms on the last line are positive,q2(0) > 0, which proves the lemma.
An example of the functionq2(ξ) is shown in Fig. 2. We haveq′2(ξ) = − sin2(ωh)q′(ξ),

soq′2(ξ) is positive ifq′(ξ) is negative. We proceed by showing



50 N. ANDERS PETERSSON

FIG. 2. The functionq2(ξ) for real-valuedξ for the casen = 15,ω = 1.

LEMMA 2.5. The function q(ξ) satisfies q′(ξ) < 0 for ξ ≥ 0.

Proof. From (21),

q(ξ) = −2

ξ
sin(ωh/2)

√
1+ sin2(ωh/2)

+ 2

√
h4

16
+ h2

4ξ
(1+ 2 sin2(ωh/2))+ 1

ξ2
sin2(ωh/2)(1+ sin2(ωh/2)).

Let us write the derivative ofq as

q′(ξ) = −I1(ξ)+ I2(ξ)

N(ξ)
,

where

I1(ξ) = h2

4ξ2
(1+ 2 sin2(ωh/2))+ 2

ξ3
sin2(ωh/2)(1+ sin2(ωh/2)),

I2(ξ) = 2

ξ2
sin(ωh/2)

√
1+ sin2(ωh/2)N(ξ),

N(ξ) =
√

h4

16
+ h2

4ξ
(1+ 2 sin2(ωh/2))+ 1

ξ2
sin2(ωg/2)(1+ sin2(ωh/2)).

After some algebra,

I 2
1 (ξ)− I 2

2 (ξ) =
h4

16ξ4
.

Hence,I 2
1 (ξ) > I 2

2 (ξ). SinceI1(ξ) > 0 andI2(ξ) > 0 forξ > 0, this impliesI1(ξ) > I2(ξ).
Furthermore,N(ξ) > 0, soq′(ξ) = (−I1(ξ)+ I2(ξ))/N(ξ) < 0 for ξ > 0. By making a
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Taylor expansion ofq′(ξ) aroundξ = 0, one can see thatq′(0) is bounded and satisfies
q′(0) < 0. This proves the lemma.

We have proven thatq2(0) > 0 and thatq′2(ξ) > 0 for ξ ≥ 0. Henceq2(ξ) > 0 for ξ ≥
0, and by using Lemma 2.2 we conclude that there are no nontrivial solutions of (23)
with <(s) ≥ 0. Therefore, the system (11) with the boundary conditionDy

0 p̂(ω, 0, s) =
− i

h sin(ωh)Dy
0 û(ω, 0, s) does not have any eigenvalues in<(s) ≥ 0.

3. THE FULLY DISCRETE CASE

We consider a backwards Euler discretization of the Stokes problem studied in the pre-
vious section:

un+1− un

1t
+ Dx

0 pn+1 = Dx
+Dx
−un+1+ Dy

+Dy
−un+1+ f (x),

vn+1− vn

1t
+ Dy

0 pn+1 = Dx
+Dx
−v

n+1+ Dy
+Dy
−v

n+1+ f (y),

Dx
+Dx
−pn+1+ Dy

+Dy
−pn+1 = f (p), (25)

un(x, 0) = 0,

u0(x, y) = 0,

p0(x, y) = 0.

Here, superscriptn corresponds to time-leveltn = n1t . As before, we need an additional
boundary condition for the pressure and the three previously considered alternatives become

1. The coupled condition:Dy
0v

n = 0.
2. The div–grad condition:Dy

0 pn+1 = 2
h Dy
+vn. Note the lagging of the velocity that is

necessary in order to calculatepn+1 before the velocities are computed.
3. The curl–curl condition:Dy

0 pn+1 = −Dx
0 Dy

0un. Again note the lagged velocity.

To analyze the stability we make the ansatz un

vn

pn

 = κn

 u0

v0

p0

 , (26)

and Fourier-transform the solution in thex-direction. After setting the forcing to zero, we
get the eigenvalue problem

κ − 1

κ1t
û+ i

h
sin(ωh) p̂ = − 4

h2
sin2(ωh/2)û+ Dy

+Dy
−û,

κ − 1

κ1t
v̂ + Dy

0 p̂ = − 4

h2
sin2(ωh/2)v̂ + Dy

+Dy
−v̂,

− 4

h2
sin2(ωh/2) p̂+ Dy

+Dy
− p̂ = 0, (27)

û(ω, 0, κ) = 0,

A(q)κDy
0 p̂(ω, 0, κ) = B̂(q)û(ω, 0, κ), q = 1, 2, or 3.
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We call κ an eigenvalue if there is a nontrivial solution of (27) with boundedL2-norm.
The Gudonov-Ryabenkii condition states that the solution of (25) is unstable if there is
an eigenvalueκ of (27) with |κ| > 1. Similar to the semidiscrete case, the absence of
eigenvalues with|κ| > 1 is only a necessary condition for stability. However, we postpone
the analysis of sufficient conditions to a future paper. Here, we will only check if there are
eigenvalues of (27) with|κ| ≥ 1.

By settings= (κ − 1)/(κ1t), we get the semidiscrete problem analyzed in the previous
section. The solution of the first four equations in (27) is therefore

û(y) = − i P sin(ωh)

h

κ1t

κ − 1
(e−αy − e−βy), (28)

v̂(y) = P sinh(αh)

h

κ1t

κ − 1
(e−αy − e−βy), (29)

p̂(y) = Pe−αy. (30)

As in the semidiscrete case, the remaining coefficientP must be determined by the pressure
boundary condition, which in this case is the last equation in (27).

Sinceκ = 1/(1− s1t), |κ| > 1 corresponds to the interior of a unit circle in the complex
s1t plane, centered ats1t = 1. The time-step1t > 0 can be arbitrarily small, so to make
sure that there are no eigenvalues in|κ| ≥ 1 for any1t > 0 it is necessary to consider
<(s) > 0 ands= 0. In the following we will alternate betweenκ andsas we find convenient.

3.1. The Coupled Condition

Since there is no lagging of time in the boundary conditionDy
0 v̂(0) = 0, we get the

same problem as in the semidiscrete case for the coupled condition. Hence, there are no
eigenvalues of (27) with|κ| ≥ 1 for1t > 0.

3.2. The Div–Grad Condition

The lagged velocity in the boundary conditionDy
0 pn+1 = 2

h Dy
+vn transforms to

κDy
0 p̂(0) = 2

h Dy
+v̂(0). Hence,

P
sinh(αh)

h

(
κ + 2(e−αh − e−βh)

h2s

)
= 0,

which is equivalent to

P
sinh(αh)

h

(
1

1− s1t
+ 2(e−αh − e−βh)

h2s

)
= 0.

There are nontrivial solutions if

q3(s) = h2

1− s1t
+ 2(e−αh − e−βh)

s

becomes zero. After some numerical experiments, we found zeros ofq3(s) with <(s) > 0.
For example, the casen = 15,ω = 1 is shown in Fig. 3. This example demonstrates that
the boundary condition makes the scheme unstable for certain1t .
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FIG. 3. The functionq3(s) for real-valueds for the casen = 15,ω = 1, and1t = 2. Note thatq3 is unbounded
ats= 0.5 and that it has a zero for 0.5< s< 1. This means that|κ| > 1, so this zero leads to an instability.

We proceed by studyingq3(s) for real-valueds and sets= ξ , =(ξ) = 0 and study
the real-valuedq3(ξ) for ξ ≥ 0. To analyze this case, we use the identity sinh−1(η) =
log(η +

√
η2+ 1) to evaluatee−βh ande−αh:

q3(ξ) = h2

1− ξ1t
+ 2

ξ

 1(
sin(ωh/2)+

√
1+ sin2(ωh/2)

)2

− 1(√
h2ξ/4+ sin2(ωh/2)+

√
h2ξ/4+ sin2(ωh/2)+ 1

)2

.
For 0< ξ < 1/1t , q3(ξ) is clearly positive. Atξ = 1/1t , q3 has a pole and becomes
negative for 1/1t < ξ ≤ 1/1t + ε, 0< ε ¿ 1. On the other hand, for largeξ ,

q3(ξ) ∼ 1

ξ

− h2

1t
+ 2(

sin(ωh/2)+
√

1+ sin2(ωh/2)
)2

, ξ →∞.

Henceq3 is positive for largeξ if

h2

1t
<

2(
sin(ωh/2)+

√
1+ sin2(ωh/2)

)2 ,

which is equivalent to

1t >
h2

2

(
sin(ωh/2)+

√
1+ sin2(ωh/2)

)2

≥ h2

2
. (31)
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TABLE II

The Largest Stable Time Step∆t∗ for Different Grid Sizes

N h 1t∗ 1t∗/h2

10 0.62832 — —
20 0.31416 0.355 3.60
40 0.15708 0.053 2.15
80 0.07854 0.011 1.78

160 0.03927 0.0025 1.62
320 0.01963 0.00060 1.56

If 1t > 1t∗, thenq3(ξ) = 0 for 0< ξ < 2/1t for at least oneω,
which makes the method unstable.

Since there are no poles inq3 for ξ > 1/1t , and q3 changes sign when the time-step
satisfies (31), there must be at least one zero inq3(ξ) for ξ > 1/1t . We summarize these
observations in

LEMMA 3.6. There is at least one zero of q3(s) in<(s) ≥ 0 if the time-step satisfies(31).

Note that there are no real-valued zeros ofq3 if 1t ≤ h2/2. As1t is increased to satisfy

h2

2

(
sin(h/2)+

√
1+ sin2(h/2)

)
< 1t <

h2

2

(
sin(2h/2)+

√
1+ sin2(2h/2)

)
,

the zero occurs only forω = 1. Hence, this instability occurs first for the lowest Fourier
mode. Naturally, as1t is increased further, the zero will eventually appear for allω.

For real-valueds, the unstable region|κ| > 1 corresponds to 0< ξ < 2/1t . Hence, only
if the zero ofq3 occurs forξ < 2/1t does it make the difference method unstable. Since
it is hard to solveq3(ξ) = 0 analytically, we did a numerical investigation for various grid
sizes. The result is presented in Table II. We note that for fine grids, the time-step restriction
in (31) is approximately three times too strict, i.e., the time-step can be three times larger
before the method becomes unstable. However, the time-step restriction is similar to that
in an explicit scheme, so the lagging of time in the boundary conditionDy

0 pn+1 = 2
h Dy
+vn

ruins the stability of the scheme.

3.3. The Curl–Curl Condition

The lagged velocity in the boundary conditionDy
0 pn+1 = −Dx

0 Dy
0un leads toκDy

0 p̂(0) =
− i

h sin(ωh)Dy
0 û(0). Therefore, the equation forP becomes

P

(
κ sinh(αh)

h
− sin2(ωh)

h2s

(
sinh(βh)

h
− sinh(αh)

h

))
= 0,

which is equivalent to

P

(
sinh(αh)

h(1− s1t)
− sin2(ωh)

h2s

(
sinh(βh)

h
− sinh(αh)

h

))
= 0. (32)

As before, there are nontrivial solutions forω = 0 that correspond to the undetermined
constant in the pressure. This mode is removed by enforcing the mean of the pressure to be
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zero. Forω > 0 we consider

q4(s) = h2 sinh(αh)

1− s1t
− sin2(ωh)q(s).

We have

=(q4(s)) = =(s)h
21t sinh(αh)

|1− s1t |2 − sin2(ωh)=(q(s)).

For=(s) > 0, the first term is positive, and by Lemma 2.3, so is the second term. Conversely,
for =(s) < 0, both terms are negative. We have proven

LEMMA 3.7. The function q4(s) satisfies=(q4(s)) = 0 if and only if=(s) = 0.

We proceed by studyingq4(s) for real-valueds= ξ , =(ξ) = 0. We begin with the case
0≤ ξ < 1/1t . From (24) and the properties of the functionq2, we get

q4(ξ) ≥ q2(ξ) > 0, 0≤ ξ < 1

1t
.

The second case isξ > 1/1t . Now both terms inq4 are negative, so

q4(ξ) < 0, ξ >
1

1t
.

At ξ = 1/1t , q4 becomes unbounded, so we conclude thatq4(ξ) 6= 0 for ξ ≥ 0. We present
an example ofq4(ξ) in Fig. 4. To summarize, there are no nontrivial solutions of (32)
for <(s) ≥ 0. Hence, there are no eigenvalues of (27) with|κ| ≥ 1 for 1t > 0 when the
boundary conditionDy

0κ p̂(ω, 0, κ) = − i
h sin(ωh)Dy

0 û(ω, 0, κ) is used.

FIG. 4. The functionq4(ξ) for real-valuedξ for the casen = 15,ω = 1, and1t = 1. Note that there is a pole
at ξ = 1, whereq4 becomes unbounded.
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4. NUMERICAL COMPUTATION OF AMPLIFICATION FACTORS

In this section we numerically compute the amplification factors for Stokes equations
discretized by backward Euler in time, and for a semi-implicit discretization of the linearized
Navier-Stokes equations where the viscous term is treated implicitly and the convective term
is handled explicitly.

We consider a rectangular domainÄ: 0≤ x ≤ 2π , 0≤ y ≤ 1, where the solution is
2π -periodic in thex-direction, with no-slip boundary conditions aty = 0 and y = 1.
The computational grid is given byxj = ( j − 1)1x, 1x = 2π/N, 1≤ j ≤ N, andyk =
(k− 1)1y,1y = 1/(M − 1), 0≤ k ≤ M + 1. The extra grid linesk = 0 andk = M + 1
outside the no-slip boundaries are used to help discretize the boundary conditions. Since the
boundary conditions are the same for both Stokes and the linearized Navier–Stokes equa-
tions, we begin by discussing them. Here, the boundary conditions will be used for solving
an eigenvalue problem corresponding to (27), so they will be expressed in the transformed
variables(û, p̂).

We apply the momentum equations at all interior points 2≤ k ≤ M − 1 and the no-
slip boundary conditions atk = 1 andk = M . The pressure equation will be applied at
all interior points and on the boundaries: 1≤ k ≤ M . Hence, to get the same number of
equations as unknowns, we will need three additional equations at each boundary. We will
use the following conditions at they = 0 boundary. Corresponding relations are imposed
at they = 1 boundary.

1. The coupled condition. Together with the zero divergence condition, enforce thev-
momentum equation and extrapolateu:


(Dy
+)4û j,0 = 0,

Dy
0 v̂ j,1 = 0,

Dy
0κ p̂j,1 = Dy

+Dy
−κv̂ j,1.

(33)

Note that the value of̂u on the ghost point is not used by any other equation.
2. The div–grad condition:


(Dy
+)4û j,0 = 0,

Dy
0 v̂ j,1 = 0,

Dy
0κ p̂j,1 = Dy

+Dy
−v̂ j,1.

(34)

Note that the only difference compared to the coupled condition is the absence of the factor
κ on the right-hand side of the last equation.

3. The curl–curl condition:
(Dy
+)4û j,0 = 0,

(Dy
+)4v̂ j,0 = 0,

Dy
0κ p̂j,1 = − i

h sin(ωh)Dy
0 û j,1.

(35)

Note that the value of ˆv on the ghost point is not used by any other equation.
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4.1. Implicit Discretization of Stokes Equations

We consider the eigenvalue problem (27) from Section 3, but now in the periodic chan-
nel domain with one of the boundary conditions (33), (34), or (35). For computational
convenience, we introduce the new variableq̂ = κ p̂ and solve for(û, v̂, q̂). By setting
λ = (κ − 1)/1t , we get the generalized eigenvalue problem

λû− λ1t Lhû = − i

1x
sin(ω1x)q̂ + Lhû, 2≤ k ≤ M − 1,

λv̂ − λ1t Lhv̂ = −Dy
0 q̂ + Lhv̂, 2≤ k ≤ M − 1,

Lhq̂ = 0, 1≤ k ≤ M,

û j,k = 0, k = 1,M,

whereLh is the discretized, Fourier-transformed, Laplace operator:

Lhû = − 4

1x2
sin2(ω1x/2)û+ Dy

+Dy
−û.

In addition, the eigenfunctions are subject to one of the boundary conditions (33), (34), or
(35). In matrix form, the eigenvalue problem can be written

Ax = λBx, x = (û0, . . . , ûM+1, v̂0, . . . , v̂M+1, q̂0, . . . , q̂M+1)
T .

We show an example of the structure of the nonzero elements inA andB in Fig. 5.
We solve the generalized eigenvalue problem for 1≤ω≤ N− 1 by using the QZ-

algorithm in Matlab (forω = 0, the problem becomes singular due to the undetermined
constant in the pressure). The amplification factorsκ = 1+ λ1t when the coupled condi-
tion (33) is used are shown in Fig. 6. The case when the div–grad condition (34) is applied is
presented in Fig. 7. Finally, the case when the curl–curl condition (35) is used is displayed
in Fig. 8.

In agreement with the analysis in Section 3, these computations indicate that the div–
grad condition (34) leads to an unstable discretization (for this time-step), while the coupled
condition (33) and the curl–curl condition (35) both lead to stable discretizations.

FIG. 5. The structure of the nonzero elements in the matricesA (left) andB (right) for the curl–curl condition,
M = 11, N = 10, andω = 5.
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FIG. 6. The amplification factorsκ for the coupled condition (33) for the case1t = 1 andN = 10, M = 11
(left), andN = 20, M = 21 (right). Note that both cases are stable. The solid line represents the neutral stability
curve|κ| = 1.

FIG. 7. The amplification factorsκ for the div–grad condition (34) for the case1t = 1 andN = 10, M = 11
(left), andN = 20, M = 21 (right). Note that both cases are unstable, and the instability gets worse as the grid is
refined. The solid line represents the neutral stability curve|κ| = 1.

FIG. 8. The amplification factorsκ for the curl–curl condition (35) for the case1t = 1 andN = 10,M = 11
(left), andN = 20, M = 21 (right). Note that both cases are stable. The solid line represents the neutral stability
curve|κ| = 1.
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4.2. Viscous-Implicit Discretization of Navier–Stokes Equations

To analyze the stability of the incompressible Navier–Stokes equations (1), we start by
linearizing the problem around smooth velocity and pressure fields;

p = P + εp′, u = U + εu′, U =
(

U
V

)
, u′ =

(
u′

v′

)
,

where 0< ε ¿ 1. After skipping the prime and setting the forcing to zero, the linearized
equations read

ut + (u · ∇)U + (U · ∇)u+∇ p = ν∇2u,
(36)

∇2 p+ 2Uxux + 2Uyvx + 2Vxuy + 2Vyvy = 0.

As in the previous sections, we discretize (36) by second-order accurate centered dif-
ferences in space. Time is discretized by a mixed forward Euler/backward Euler scheme,
where the viscous term is treated implicitly and the convective term is handled explicitly.

To analyze the stability of the scheme, the variable coefficients are frozen and the problem
is Fourier transformed in thex-direction, resulting in

ûn+1− ûn

1t
+ AE(U)ûn + Gh p̂n+1 = νLhûn+1,

whereGh is the discretized, Fourier-transformed gradient operator

Gh p̂ =
( i sin(ω1x)

1x

Dy
0

)
p̂,

andAE(U) corresponds to the linearized convective term

AE(U)û =
(
Dx

0U
)

û+U
i sin(ω1x)

1x
û+ (Dy

0U
)
v̂ + V Dy

0 û.

After discretization and Fourier transformation, the linearized pressure equation in (36)
becomes

Lh p̂n+1 = Rh(U)ûn, (37)

where

Rh(U)ûn = −2
(
Dx

0 V
)
Dy

0 ûn − 2
(
Dy

0 V
)
Dy

0 v̂
n − 2

(
Dx

0U
) i sin(ω1x)

1x
ûn

− 2
(
Dy

0U
) i sin(ω1x)

1x
v̂n.

To derive the eigenvalue problem, we make the ansatz (26), and setq̂ = κ p̂ andκ =
1+ λ1t . This yields

λû− λ1tνLhû = −AE(U)û− Ghq̂ + νLhû, 2≤ k ≤ M − 1,

Lhq̂ = Rh(U)û, 1≤ k ≤ M,

û j,k = 0, k = 1,M.

(38)
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In addition, the eigenfunctions are subject to one of the pressure boundary conditions (33),
(34), or (35).

We linearize the equations around the divergence-free velocity field(
U (x, y)

V(x, y)

)
=
(

sin2(πx/4) sin(πy/2)

−sin(πx/2) sin2(πy/4)

)
, (39)

where the coefficients are frozen atx = 0.5.
In order to estimate the largest stable time-step, we proceed by performing a von Neumann

analysis of the spectrum. For this purpose, we neglect the boundaries aty = 0 andy = 1,
assume that the solution is 2π -periodic in bothx andy, and Fourier transform the problem
in both directions. For simplicity, we neglect all zeroth-order terms, and we disregard the
pressure. Then theu- andv-equations decouple and we get the approximate expression for
the amplification factor,

κa − 1

1t
+ ia = −νκab,

where

a(ω, ω2) = U
sin(ω1x)

1x
+ V

sin(ω21y)

1y
,

b(ω, ω2) = 4

1x2
sin2(ω1x/2)+ 4

1y2
sin2(ω21y/2).

We have

κa = 1− ia1t

1+ νb1t
.

Since|a| > 0 for ω > 0 or ω2 > 0, we see that|κa| > 1 if ν = 0. Hence, the scheme is
unstable for all1t whenν = 0. However, forν > 0, the factorb improves the situation
sinceb > 0 forω > 0 andω2 > 0. In this case the scheme is stable for sufficiently small1t .
GivenU, ν, and the grid sizes, the largest1t that satisfies|κa| ≤ 1 for all 0≤ ω ≤ N − 1
and 0≤ ω2 ≤ M − 1 can be computed numerically. For the caseν = 0.05,N = 10 (1x =
π/5) andM = 11 (1y = 1/10), we get1t ≈ 1.44. This time-step also makes|κa| < 1 for
M = 21 andN = 20.

We solve the eigenvalue problem (38) for the three different pressure boundary conditions
by using Matlab. In Figs. 9, 10, and 11, we show the corresponding amplification factors. In
these computations, we used1t = 1.44 andν = 0.05. Similar to the implicit discretization
of Stokes equation, the div–grad condition leads to an unstable scheme, while the curl– curl
condition gives a stable scheme. The coupled condition has one pair of eigenvalues with
|κ| > 1 for the finer grid, but stability was regained when the time-step was reduced to
1t = 1.

After some experimentation, we found that the case with the div–grad condition could
be made stable by decreasing the time-step to1t ≈ 0.073 (for N = 20, M = 21), which
is almost 20 times smaller than the original time-step. Also note that1y2/ν = 0.05, so
the stable time-step is approximately 1.461y2/ν, which agrees well with the analysis in
Section 3.2.
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FIG. 9. The amplification factorsκ for the viscous-implicit treatment of the Navier–Stokes equations with the
coupled condition (33) for the case1t = 1.44,ν = 0.05. The resolution isN = 10, M = 11 (left), andN = 20,
M = 21 (right). Note that the fine grid has two unstable eigenvalues for this time-step. The solid line represents
the neutral stability curve|κ| = 1.

FIG. 10. The amplification factorsκ for the viscous-implicit treatment of the Navier–Stokes equations with
the div–grad condition (34) for the case1t = 1.44, ν = 0.05. The resolution isN = 10, M = 11 (left), and
N = 20,M = 21 (right). Note that both cases are unstable and that the instability gets worse as the grid is refined.
The solid line represents the neutral stability curve|κ| = 1.

FIG. 11. The amplification factorsκ for the viscous-implicit treatment of the Navier–Stokes equations with the
curl–curl condition (35) for the case1t = 1.44,ν = 0.05. The resolution isN = 10, M = 11 (left), andN = 20,
M = 21 (right). Note that both cases are stable. The solid line represents the neutral stability curve|κ| = 1.
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5. FLOW AROUND CYLINDERS

In this section, we numerically solve the incompressible Navier–Stokes equations to
test both split pressure boundary conditions as well as the inaccurate, but commonly used
[9, 10], homogeneous Neumann condition

∂p

∂n
= 0, (x, y) ∈ ∂Ä. (40)

We solve the equations by using the OverBlown solver [6], which is based on the Over-
ture class library. OverBlown uses overlapping (Chimera) grids to discretize the unsteady
incompressible Navier–Stokes equations in velocity-pressure formulation. For this reason,
we cannot use it to test the coupled condition, which would require a simultaneous solution
of the momentum and pressure equations.

While the solver is capable of simulating both 2-D and 3-D problems in rather complicated
geometries, we use it to demonstrate the stability characteristics of the pressure boundary
conditions. For this purpose we find it sufficient to study unsteady 2-D flow past circular
cylinders in a channel.

To make the time-integration efficient, we only use the semi-implicit technique on com-
ponent grids where the viscous term dominates the convective term. Often, this is the case
for components with a no-slip boundary, where the grid needs to be fine in order to resolve
boundary layers. On the other components, we employ an explicit method.

The semi-implicit technique consists of a second-order Adams–Bashforth/Adams–
Moulton predictor–corrector scheme for the convective part coupled to a second-order
Crank–Nicholson scheme for the viscous part. To describe the scheme, we split the incom-
pressible Navier–Stokes equations (1) according to

ut = L1u+ L2u+ f ,

where

L1u = −(u · ∇)u−∇ p,

L2u = ν∇2u,

and p satisfies the pressure equation in (1). Then each time-step consists of a predictor

up − un

1t
= 3

2
L1un − 1

2
L1un−1+ 1

2
(L2up + L2un)+ 3

2
f n − 1

2
f n−1,

followed by a corrector

un+1− un

1t
= 1

2
L1up + 1

2
L1un + 1

2
(L2un+1+ L2un)+ 1

2
f n+1+ 1

2
f n.

Note that the scheme is explicit in the pressure. For example, let us denote the pressure
occurring inL1un by pn. It is computed by solving

∇2 pn +∇un · un
x +∇vn · un

y = ∇ · f ,

together with one of the pressure boundary conditions.
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The explicit time-integration method, which is used on component grids where the con-
vective term dominates the viscous term, is obtained by applying the Adams–Bashforth/
Adams–Moulton predictor–corrector scheme to both the convective and the viscous terms.

Due to truncation errors and because of the interpolation between components in the
overlapping grid, the divergence will not be identically zero in the numerical computation.
To suppress the spurious divergence, an extra term is added to the pressure equation in the
OverBlown solver:

∇2 p+∇u · ux +∇v · uy = ∇ · f + C(x)∇ · u.

This term can be viewed as a divergence sink, since it appears as a sink in the equation for
the divergence. The OverBlown documentation [6] provides a detailed description of the
coefficientC(x).

We start by checking the accuracy and stability of the solver by applying the method of
an exact solution: see Chesshire and Henshaw [2]. We choose the exact solution to be

ue(x, y, t) = 1

2
cos(πx/2) cos(πy/2) cos(π t/2)+ 1

2
,

ve(x, y, t) = 1

2
sin(πx/2) sin(πy/2) cos(π t/2)+ 1

2
, (41)

pe(x, y, t) = cos(πx/2) cos(πy/2) cos(π t/2)+ 1

2
.

The forcing is constructed by inserting the exact solution (41) into (1). For example, the
u-component of the momentum equation yields

f (u) =:
∂ue

∂t
+ ue · ∇ue+ ∂pe

∂x
− ν∇2ue.

The forced problem is solved numerically and the truncation error can be computed by
taking the difference between the exact and the numerical solution. Furthermore, the order
of accuracy can be estimated by refining the grid. Note that only one level of refinement
is necessary, since the truncation error can be computed exactly. In the computations, the
initial data isu0(x, y) = ue(x, y, 0), ν = 0.01, and the truncation error was evaluated at
time t = 1. The computational grid is shown in Fig. 12 and the results are presented in
Table III. Note that all three boundary conditions yield second-order accurate velocities
and divergence. The apparent superconvergence of the pressure is caused by the divergence
sink in the pressure equation.

The time-step used for the curl–curl condition and the simplified Neumann condition was
calculated by a von Neumann analysis based on only the convective part of the equations.
The computations indicate that the scheme is stable for this time-step. However, for the
div–grad condition, the time-step needs to be much smaller. The time-steps reported in
Table III are the largest values that gave a stable scheme. Also note that in this case, the
time-step is proportional to the square of the grid size, instead of being proportional to the
grid size itself, as it is when the curl–curl condition is applied.

The simplified Neumann condition (40) is apparently stable for the same time-step as
the curl–curl condition. In this forced computation, a forcing is also added to the boundary
conditions, which makes the simplified Neumann condition compatible with the momentum
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FIG. 12. The coarser of the grids used in the convergence study with 41× 21 points in the rectangular grid
and 21× 14 points in the circular grid. The finer counterpart of this grid had 81× 41∪ 41× 27 points. A no-slip
boundary condition was imposed on the circle, and slip conditions were used on the horizontal boundaries of the
rectangle. The left boundary had a prescribed velocity condition (inflow) and an outflow condition was prescribed
on the right boundary.

equations. Therefore, the divergence remains small in these computations. However, in the
unforced case, the simplified Neumann condition is not compatible with the momentum
equations, so it cannot be expected to perform as well.

We proceed by studying the unsteady flow around two cylinders in a rectangular channel
to evaluate the curl–curl condition and the simplified homogeneous Neumann condition
(40). The channel has the dimensions [−2.5, 7.5]× [−2.5, 2.5] with slip boundaries on the
horizontal sides, prescribed velocity on the left (inflow) boundary, and an outflow condition
on the right boundary. Both cylinders have radius 0.5 and they are centered atx = (0, 0.75)
andx = (0.5,−0.75). To conserve computational resources, we construct a grid with several
components to concentrate grid points in the regions where the solution can be expected to
vary rapidly; see Fig. 13. We start the computation from rest,u0(x, y) = 0, and accelerate
the flow smoothly up to timet = 1 by prescribing the horizontal velocity component on the
inflow boundary to be

Uin(t) =


0, t ≤ 0,

3t2− 2t3, 0< t ≤ 1,

1, t > 1.

(42)

Shortly after the acceleration of the fluid is completed, the flow develops an oscillating

TABLE III

Truncation Errors for the Forced Computation for the Div–Grad and Curl–Curl Conditions

as Well as the Simplified Homogeneous Neumann Condition

BC Grid 1t ‖p− pe‖∞ ‖u− ue‖∞ ‖v − ve‖∞ ‖∇ · u‖∞
div–grad coarse 2.0 · 10−3 5.8 · 10−2 4.2 · 10−2 8.6 · 10−2 1.1 · 10−1

div–grad fine 5.0 · 10−4 5.7 · 10−3 8.8 · 10−3 1.5 · 10−2 2.4 · 10−2

curl-curl coarse 1.1 · 10−2 5.8 · 10−2 4.2 · 10−2 8.6 · 10−2 1.1 · 10−1

curl–curl fine 5.5 · 10−3 5.8 · 10−3 8.8 · 10−3 1.5 · 10−2 2.4 · 10−2

simple coarse 1.1 · 10−2 7.3 · 10−2 4.2 · 10−2 8.6 · 10−2 1.2 · 10−1

simple fine 5.5 · 10−3 9.1 · 10−3 8.8 · 10−3 1.5 · 10−2 2.4 · 10−2



FIG. 13. A closeup of the grid used to compute the flow around two cylinders. This grid has 9 components
with a total of 26,223 grid points, of which 14,256 are discretization points, 10,017 are (unused) hole points and
1,950 are interpolation points. The semi-implicit time-integration method was used on the component grids with
a boundary on one of the circles, and the explicit method was used on all Cartesian grids.

FIG. 14. The vorticity around the two cylinders at timet = 15.

65
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pattern where the von Karman vortices behind the two cylinders interact. In the present
computation, the viscosity wasν = 0.02, which corresponds to a Reynolds number of 50
based on the diameter of a cylinder. As an example, we show the vorticity at timet = 15
in Fig. 14. An interesting observation is that essentially the same solution is obtained when
the homogeneous Neumann condition (40) is used. However, close to the no-slip walls
on the cylinders, a divergence boundary layer is formed. The net effect of the divergence
is to change the shape of the cylinders such that they become slightly more streamlined;
see Fig. 15. When the homogeneous Neumann condition is used, the divergence in the
boundary layer is negative on the upstream side and positive on the upper and lower sides.
As a consequence, streamlines enter through the cylinder on its upstream side and exit on
the upper and the lower sides of the cylinder, which makes the curvature of the streamlines

FIG. 15. Streamlines around parts of the lower cylinder for the curl–curl condition (top) and the homogeneous
Neumann condition (bottom).
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FIG. 16. The pressure as a function ofx on the lower cylinder.

smaller. It can therefore be expected that the pressure on the cylinder is affected; see Fig. 16.
Furthermore, integrated quantities such as lift, drag, and torque are also affected adversely
by the simplified pressure boundary condition; see Table IV. We conclude that the use of
the homogeneous Neumann boundary condition for the pressure gives questionable results,
especially close to no-slip boundaries.

As a final experiment, we study how the curl–curl boundary condition performs at a
higher Reynolds number, where boundary layers get thinner and the normal derivative of
the pressure becomes smaller. The normal derivative of the divergence is forced to be zero
on no-slip boundaries by the balance between the viscous terms in the momentum equations
and in the curl–curl boundary condition. Subtracting (7) from the normal component of the
momentum equations in (1) applied to a no-slip boundary yields

0= νn · (∇2u+∇ × ∇ × u) ≡ ν ∂(∇ · u)
∂n

. (43)

In the discrete case, the momentum equations are only applied in the interior of the domain,

TABLE IV

Forces and Torque About the Point (0.25, 0) on Both Cylin-

ders at Timet = 15 when the Curl–Curl Condition and the Sim-

ple Homogeneous Neumann Condition Are Used

BC Drag Lift Torque

curl–curl 3.90 0.52 0.41
simple 3.97 0.50 0.38
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FIG. 17. The vorticity (left) and the divergence (right) at timet = 2.0 for the caseν = 10−3. Both the vorticity
and the divergence are plotted with 18 equally spaced contour lines. The contour lines are between±130 for the
vorticity and between±0.05 for the divergence. The thick lines show component grid boundaries.

and not on the boundary, so the balance in (43) is perturbed by truncation error terms.
Hence, it is interesting to see how the divergence in the numerical solution behaves near
the boundary whenν becomes small. For this purpose, we compute the unsteady flow
around the two cylinders whenν = 10−3, which corresponds to a Reynolds number of
103. Similar to the previous computation, the inflow velocity is smoothly accelerated from
rest according to (42). To resolve the solution at this Reynolds number, the resolution was
increased to 245,281 grid points, of which 236,355 were discretization points and 8,926
were interpolation points. In Fig. 17, we present the vorticity and the divergence at time
t = 2. The scheme used in the OverBlown solver is not conservative, so the divergence can
only be expected to be small, that is, of the order of the truncation error. We view the amount
of divergence as a measure of the accuracy of the velocity gradients in the flow field. Since
the divergence is more than two orders of magnitude smaller than the vorticity, we deduce
that the solution is adequately resolved on the grid. Furthermore, the divergence is small
near all no-slip boundaries and we conclude that the curl–curl boundary condition works
well also whenν becomes small.

6. CONCLUSIONS

The stability properties of three different pressure boundary conditions for no-slip walls
have been studied in detail. First, we used a normal-mode technique to analyze Stokes
equations discretized by centered differences in space and by backward Euler in time on
a half-plane problem with only one no-slip boundary. We have proven that the div–grad
condition is unstable for time-steps1t > Ch2, whereh is the grid size andC is a constant.
For the curl–curl condition and the coupled condition, we have shown that the necessary
Godunov–Ryabenkii stability condition is satisfied for all1t > 0.
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For a periodic channel domain with two no-slip boundaries, we have performed numer-
ical computations of the amplification factors. For the Stokes equation, we confirmed the
analytical results for the backward Euler scheme. A mixed forward Euler/backward Euler
discretization of the linearized Navier–Stokes equations was also studied. Here, the con-
vective term is treated explicitly while the viscous term is handled implicitly. In this case,
we have demonstrated that the curl–curl condition and the coupled condition lead to stable
schemes (for positive viscosities) using the time-step predicted by a von Neumann analy-
sis. It was also shown that the div–grad condition is stable only for a significantly smaller
time-step.

The div–grad and the curl–curl conditions as well as a homogeneous Neumann condition
have also been evaluated in the Navier–Stokes solver OverBlown to study the unsteady flow
around cylinders in a 2-D channel. Here the problem was integrated in time with a second
order Adams–Bashforth/Adams–Moulton predictor–corrector scheme for the convective
part coupled to a second-order Crank–Nicholson scheme for the viscous part. While all
three pressure boundary conditions were shown to be second-order accurate, the stability
properties were significantly different. In agreement with the analysis and the amplification
factor computation, the div–grad condition was only stable for a time-step1t ≤ Ch2. In
contrast, the curl–curl condition and the homogeneous Neumann conditions were stable for
the time-step predicted by a von Neumann analysis based on only the convective terms.
Furthermore, it has been demonstrated that the use of the homogeneous Neumann condition
leads to significant errors close to no-slip boundaries, which adversely affects the accuracy
of integrated quantities such as lift, drag, and torque, which are of utmost importance in
engineering applications.
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